

Problem Introduction

Flux Pinned Interfaces (FPIs)

- A promising technology to manage the dynamic behavior of close-proximity spacecraft
 - Provide passively stable equilibrium
- Flux pinning occurs when a Type-II superconducting material is cooled to below its critical temperature in the presence of an external magnetic field
 - Typical critical temperature: ~77 K
 - Makes measuring dynamic interaction challenging
- In need of technology development
 - Characterize dynamic interaction
 - Flight-like thermal subsystem

Problem Introduction

Testbeds for Measuring Dynamics

- Potential application: Sample capture for Mars sample return
 - Sample return orbiter
 - Orbiting spacecraft containing superconductors
 - Orbiting sample
 - Sphere containing planetary samples with permanent magnets on perimeter
- Thermal subsystem needs for testbed:
 - No condensation on surfaces
 - Operational times on the order of many hours
 - Fine temperature control of superconductor temperature
 - Stability and accuracy important below 88 K
 - Minimal spacing between superconductor and magnets with precision alignment
 - Minimal use of ferromagnetic material in system
 - Limits external forces and torques

Device Description

- Modular thermal vacuum system
 - Able to be used in multiple testbeds
- Non-consumable cooling source
 - Cryocooler with flight-heritage
 - ECOSTRESS
 - Thales LPT9310
 - 7.0 kg
- Meets thermal needs
 - Room temperature exterior
 - Indefinite operation
 - Closed loop temp control
 - Aluminum near FPI

Device Description

- 3x Yttrium barium copper oxide (YBCO) superconductor disks in aluminum housings
- Thermally connected to cryocooler by aluminum conduction path
 - Flexible thermal straps used for compliance
- Mechanically mounted to delrin cap with thermal isolation
- Multi-layer insulation (MLI) on cold components

Thermal Design

- Temperature difference across superconductor case <1 K
- Conduction paths:
 - Tortuous from superconductor to delrin cap
 - Excellent from superconductor to coldtip
- Vacuum environment eliminates convective heat transfer
- Heat rejected from the cryocooler to ambient air by convection
- Radiative heat transfer from vacuum to cold components minimized with MLI

Operational Timeline

- Place/mount a permanent magnet near each delrin cap for field cooling
- Turn on vacuum pump
 - Wait ~1 hour for pressure to reach 10⁻⁴ torr
- Turn on cryocooler and cooling fans
 - Wait ~13 hours for superconductors to be less than 88 K
- Remove magnet mounting and observe magnet equilibrium position
- Perform dynamics experiments in testbed
 - Can operate for weeks at a time
- Turn off cryocooler
 - FPI maintained for ~30 minutes with cryocooler off
 - Warm up takes ~66 hrs without heating

Video(s) of magnets floating

Thermal Performance and Modeling

- Device able to bring superconductors below 88 K with 105 W of cryocooler input power
- Multi-mode heat transfer: conduction and radiation
 - Difficult to solve analytically
- Thermal model created in SolidWorks 2016
 - Conduction along path from superconductor to cold tip
 - Thermal interface resistances accounted for
 - Radiation from environment to cold components
- Model temperature predictions agree with measured data
 - Predicted heat lift compares well with cryocooler performance measurements
- Model can be applied to spacecraft environment
 - To predict power consumption of cryocooler

Successful Demonstration in Testbeds

- Ground with air bearing: Four degrees of freedom
 - Operated for approximately a month at a time
- Microgravity: Six degrees of freedom
 - Successfully flown on two Zero-G flight campaigns
 - Getter pump used to maintain vacuum

Video of Flatfloor? Ze

Predicting Thermal Performance in Space

- Model setup:
 - Conductive path from superconductor to cold tip same as device thermal model
 - MLI emissivity larger than device
 - Conduction to delrin cap eliminated
 - Surrounding temperature of 300 K
 - Cold tip temperature of 80 K
- 1.82 W of cooling total
 - 0.403 W per superconductor plus 50% margin for concept-definition phase
- Cryocooler consumes 57 W of power
 - 293 K heat rejection
- Superconductors at 81.65 K

Modifying Device for Space

- Remove vacuum enclosure
- Radiator to reject 57 W of cryocooler heat
 - 0.138 m² at 300 K
- Flight electronics: Iris Technologies Low-cost control electronics
 - 2 kg and >85% efficiency
- Other potential changes:
 - Thermal strap from aluminum to pyrolytic graphite film
 - Reduces mass
 - Better thermal conductance
 - Reduce thermal interface resistances

Summary/ Recommendations

- Thermal subsystem successful in two different testbeds
 - Device will operate indefinitely with vacuum pump
- Thermal modeling principles were developed and model was verified
 - Model used to predict power consumption in space
- Further technology development:
 - Operate the thermal system in a larger vacuum chamber
 - Flight-like demonstration
 - Verify the model predictions without heat leak to the vacuum chamber
 - Develop cryogenic bolted thermal interfaces for predictability and repeatability
 - Non-standard cryogenic bolted thermal interfaces hard to predict
- Future applications should be wary of the superconductors mounting
 - Thermal isolation necessary
 - Knowledge of absolute location important

Thank you for your attention

jpl.nasa.gov

Questions?

© 2019 California Institute of Technology. Government sponsorship acknowledged.